Crumpled graphene paper for high power sodium battery anode
نویسندگان
چکیده
Graphene-based electrodes typically form a compact uniaxially oriented stacked structure during electrode preparation due to the highly anisotropic morphology. This leads to limited diffusion paths for the insertion of Li or Na when used as electrodes in rechargeable batteries. Here, we demonstrate that selfstanding electrodes formed of randomly folded and/or crumpled graphene nanosheets can be obtained via a simple modified reduction process, and that the crumpled structure can significantly increase the power capability of graphene-based anodes of sodium-ion batteries. These electrodes can deliver a power density of approximately 20,000 W kg 1, which surpasses the Li storage capability of conventional graphene paper electrodes. Moreover, the specific capacity was stably maintained without a binder, conductive agent, or substrate for more than 500 charge/discharge cycles and 1000 cycles of repeated
منابع مشابه
Boron-doped graphene as a promising anode for Na-ion batteries.
The Na-ion battery has recently gained a lot of interest as a low-cost alternative to the current Li-ion battery technology. Its feasibility strongly depends on the development of suitable electrode materials. In the present work we propose a novel anode candidate, boron-doped graphene, for the Na-ion battery. Our first-principles calculations demonstrate that the sodiation of boron-doped graph...
متن کاملStretchable and High-Performance Supercapacitors with Crumpled Graphene Papers
Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication...
متن کاملEffect of sheet morphology on the scalability of graphene-based ultracapacitors.
Graphene is considered a promising ultracapacitor material toward high power and energy density because of its high conductivity and high surface area without pore tortuosity. However, the two-dimensional (2D) sheets tend to aggregate during the electrode fabrication process and align perpendicular to the flow direction of electrons and ions, which can reduce the available surface area and limi...
متن کاملCrumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes.
Submicrometer-sized capsules made of Si nanoparticles wrapped by crumpled graphene shells were made by a rapid, one-step capillary-driven assembly route in aerosol droplets. Aqueous dispersion of micrometer-sized graphene oxide (GO) sheets and Si nanoparticles were nebulized to form aerosol droplets, which were passed through a preheated tube furnace. Evaporation-induced capillary force wrapped...
متن کاملReduced graphene oxide with superior cycling stability and rate capability for sodium storage
Sodium ion battery is a promising electrical energy storage system for sustainable energy storage applications due to the abundance of sodium resources and their low cost. In this communication, the electrochemical properties of sodium ion storage in reduced graphene oxide (RGO) were studied in an electrolyte consisting of 1 M NaClO4 in propylene carbonate (PC). The experimental results show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016